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Abstract

We propose a grammar induction tech-
nique for AMR semantic parsing. While
previous grammar induction techniques
were designed to re-learn a new parser for
each target application, the recently anno-
tated AMR Bank provides a unique op-
portunity to induce a single model for un-
derstanding broad-coverage newswire text
and support a wide range of applications.
We present a new model that combines
CCG parsing to recover compositional
aspects of meaning and a factor graph
to model non-compositional phenomena,
such as anaphoric dependencies. Our ap-
proach achieves 66.2 Smatch F1 score on
the AMR bank, significantly outperform-
ing the previous state of the art.

1 Introduction

Semantic parsers map sentences to formal repre-
sentations of their meaning (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Liang et al.,
2011). Existing learning algorithms have primar-
ily focused on building actionable meaning repre-
sentations which can, for example, directly query
a database (Liang et al., 2011; Kwiatkowski et al.,
2013) or instruct a robotic agent (Chen, 2012;
Artzi and Zettlemoyer, 2013b). However, due to
their end-to-end nature, such models must be re-
learned for each new target application and have
only been used to parse restricted styles of text,
such as questions and imperatives.

Recently, AMR (Banarescu et al., 2013) was
proposed as a general-purpose meaning represen-
tation language for broad-coverage text, and work
is ongoing to study its use for variety of appli-
cations such as machine translation (Jones et al.,
2012) and summarization (Liu et al., 2015). The
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AMR meaning bank provides a large new corpus
that, for the first time, enables us to study the
problem of grammar induction for broad-coverage
semantic parsing. However, it also presents sig-
nificant challenges for existing algorithms, in-
cluding much longer sentences, more complex
syntactic phenomena and increased use of non-
compositional semantics, such as within-sentence
coreference. In this paper, we introduce a new,
scalable Combinatory Categorial Grammar (CCG;
Steedman, 1996, 2000) induction approach that
solves these challenges with a learned joint model
of both compositional and non-compositional se-
mantics, and achieves state-of-the-art performance
on AMR Bank parsing.

We map sentences to AMR structures in a two-
stage process (Section 5). First, we use CCG to
construct lambda-calculus representations of the
compositional aspects of AMR. CCG is designed
to capture a wide range of linguistic phenomena,
such as coordination and long-distance dependen-
cies, and has been used extensively for semantic
parsing. To use CCG for AMR parsing we define a
simple encoding for AMRs in lambda calculus, for
example, as seen with the logical form z and AMR
a in Figure 1 for the sentence Pyongyang officials
denied their involvement. However, using CCG to
construct such logical forms requires a new mech-
anism for non-compositional reasoning, for exam-
ple to model the long-range anaphoric dependency
introduced by their in Figure 1.

To represent such dependencies while main-
taining a relatively compact grammar, we fol-
low Steedman’s (2011) use of generalized Skolem
terms, a mechanism to allow global references in
lambda calculus. We then allow the CCG deriva-
tion to mark when non-compositional reasoning is
required with underspecified placeholders. For ex-
ample, Figure 1 shows an underspecified logical
form u that would be constructed by the grammar
with the bolded placeholder ID indicating an un-



resolved anaphoric reference. These placeholders
are resolved by a factor graph model that is defined
over the output logical form and models which
part of it they refer to, for example to find the ref-
erent for a pronoun. Although primarily motivated
by non-compositional reasoning, we also use this
mechanism to underspecify certain relations dur-
ing parsing, allowing for more effective search.

Following most work in semantic parsing, we
consider two learning challenges: grammar in-
duction, which assigns meaning representations
to words and phrases, and parameter estimation,
where we learn a model for combining these
pieces to analyze full sentences. We introduce a
new CCG grammar induction algorithm which in-
corporates ideas from previous algorithms (Zettle-
moyer and Collins, 2005; Kwiatkowski et al.,
2010) in a way that scales to the longer sentences
and more varied syntactic constructions observed
in newswire text. During lexical generation (Sec-
tion 6.1), the algorithm first attempts to use a set
of templates to hypothesize new lexical entries. It
then attempts to combine bottom-up parsing with
top-down recursive splitting to select the best en-
tries and learn new templates for complex syntac-
tic and semantic phenomena, which are re-used in
later sentences to hypothesize new entries.

Finally, while previous algorithms (e.g., Zettle-
moyer and Collins, 2005) have assumed the ex-
istence of a grammar that can parse nearly every
sentence to update its parameters, this does not
hold for AMR Bank. Due to sentence complex-
ity and search errors, our model cannot produce
fully correct logical forms for a significant portion
of the training data. To learn from as much of the
data as possible and accelerate learning, we adopt
an early update strategy to generate effective up-
dates from partially correct analyses (Section 6.2).

We evaluate performance on the publicly avail-
able AMR Bank (Banarescu et al., 2013) and
demonstrate that our modeling and learning con-
tributions are crucial for grammar induction at this
scale and achieve new state-of-the-art results for
AMR parsing (Section 8). In addition, we also
present, for the first time, results without surface-
form alignment heuristics, which demonstrates the
need for future work, especially to generalize to
other languages. The source code and learned
models are available online.1

1http://yoavartzi.com/amr

x: Pyongyang officials denied their involvement.

a: (d/deny-01
:ARG0 (p/person

:ARG0-of (h/have-org-role-91
:ARG1 (c/city

: name (n/name :op1“Pyongyang”))
:ARG2(o/official)))

:ARG1 (i/involve-01 :ARG1 p))

u: A1(λd.deny-01(d) ∧
ARG0(d,A2(λp.person(p) ∧

REL-ofREL-ofREL-of(p,A3(λh.have-org-role-91(h) ∧
ARG1(h,A4(λc.city(c) ∧

name(c,A5(λn.name(n) ∧
op1(n,PYONGYANG))))) ∧

RELRELREL(h,A6(λo.official(o)))))) ∧
ARG1(d,A7(λi.involve-01(i) ∧

ARG1(i,R(IDIDID))))))

z: A1(λd.deny-01(d) ∧
ARG0(d,A2(λp.person(p) ∧

ARG0-of(p,A3(λh.have-org-role-91(h) ∧
ARG1(h,A4(λc.city(c) ∧

name(c,A5(λn.name(n) ∧
op1(n,PYONGYANG))))) ∧

ARG2(h,A6(λo.official(o)))))) ∧
ARG1(d,A7(λi.involve-01(i) ∧

ARG1(i,R(2))))))

Figure 1: A sentence (x) paired with its AMR (a), un-
derspecified logical form (u), which contains under-
specified constants in bold that are mapped to AMR re-
lations to generate the fully specified logical form (z).

2 Technical Overview
Task Let X be the set of all possible sentences
and A the set of all AMR structures. Given a sen-
tence x ∈ X , we aim to generate an AMR a ∈ A.
We define a simple, deterministic and invertible
conversion process between AMRs and lambda-
calculus logical forms; roughly speaking, each
AMR variable gets its own lambda term, which
is scoped as low as possible, and each AMR role
becomes a binary predicate applied to these vari-
ables. Figure 1 shows an example, and the full de-
tails are provided in the supplementary materials.
Therefore, henceforth we discuss the task of map-
ping a sentence x ∈ X to a logical form z ∈ Z ,
where Z is the set of all logical forms. For ex-
ample, in Figure 1, we would map the sentence x
to the logical form z. We evaluate system perfor-
mance using SMATCH (Cai and Knight, 2013).

Model Given a sentence x and lexicon Λ, we
generate the set of possible derivations GEN(x,Λ)
using a two-stage process (Section 5). First,
we use a weighted CCG to map x to an under-
specified logical form u (Section 5.1), a logical
form with placeholder constants for unresolved el-
ements. For example, in the underspecified log-
ical form u in Figure 1, the constants REL-of ,
REL and ID are placeholders. We then resolve



these placeholders by defining a factor graph to
find their optimal mapping and generate the final
logical form z. In the figure, REL-of is mapped to
ARG0-of , REL to ARG2 and ID to 2.

Learning We assume access to a training set of
N examples {(xi, zi) : i = 1 . . . N}, each con-
taining a sentence xi and a logical form zi. Our
goal is to learn a CCG, which constitutes learn-
ing the lexicon and estimating the parameters of
both the grammar and the factor graph. We de-
fine a learning procedure (Section 6) that alter-
nates between expanding the lexicon and updating
the parameters. Learning new lexical entries relies
on a two-pass process that combines learning the
meaning of words and new syntactic structures,
and supports learning with and without alignment
heuristics (e.g., from Flanigan et al., 2014).

3 Related Work

The problem of learning semantic parsers has re-
ceived significant attention. Algorithms have been
developed for learning from different forms of
supervision, including logical forms (Wong and
Mooney, 2007; Muresan, 2011), question-answer
pairs (Clarke et al., 2010; Liang et al., 2011; Cai
and Yates, 2013; Kwiatkowski et al., 2013), sen-
tences paired with demonstrations (Goldwasser
and Roth, 2011; Chen and Mooney, 2011), con-
versational logs (Artzi and Zettlemoyer, 2011),
distant supervision (Krishnamurthy and Mitchell,
2012, 2015; Reddy et al., 2014) and without ex-
plicit semantic supervision (Poon, 2013).

Although we are first to consider using CCG to
build AMR representations, our work is closely re-
lated to existing methods for CCG semantic pars-
ing. Previous CCG induction techniques have ei-
ther used hand-engineered lexical templates (e.g.,
Zettlemoyer and Collins, 2005) or learned tem-
plates from the data directly (e.g., Kwiatkowski
et al., 2010, 2012). Our two-pass reasoning for
lexical generation combines ideas from both meth-
ods in a way that greatly improves scalability to
long, newswire-style sentences. CCG has also
been used for broad-coverage recovery of first-
order logic representations (Bos, 2008; Lewis and
Steedman, 2013). However, this work lacked cor-
pora to evaluate the logical forms recovered.

AMR (Banarescu et al., 2013) is a general-
purpose meaning representation and has been used
in a number of applications (Pan et al., 2015; Liu
et al., 2015). There is also work on recovering

Happy people dance

N[x]/N[x] N[pl] S\NP[pl]
λf.λx.f(x) ∧ ARG1-of(x, λp.people(p) λx.λd.dance-01(d)
A(λc.content-01(c))) ∧ARG0(d, x)

>
N[pl]

λp.people(p) ∧ ARG1-of(x,A(λc.content-01(c)))

NP[pl]
A(λp.people(p) ∧ ARG1-of(x,
A(λc.content-01(c))))

>
S

λd.dance-01(d) ∧ ARG0(d,A(λp.people(p) ∧ ARG1-of(x,
A(λc.content-01(c)))))

Figure 2: Example CCG tree with three lexical entries,
two forward applications (>) and type-shifting of a plu-
ral noun to a noun phrase.

AMRs, including graph parsing (Flanigan et al.,
2014), methods to build AMRs from dependency
trees (Wang et al., 2015) and algorithms for align-
ing words to AMRs (Pourdamghani et al., 2014).

4 Background
Combinatory Categorial Grammar CCG is a
categorial formalism that provides a transparent
interface between syntax and semantics (Steed-
man, 1996, 2000). Section 7 details our instan-
tiation of CCG. In CCG trees, each node is a
category. Figure 2 shows a simple CCG tree.
For example, S\NP[pl] : λx.λd.dance-01(d) ∧
ARG0(d, x) is a category for an intransitive verb
phrase. The syntactic type S\NP[pl] indicates that
an argument of type NP[pl] is expected and the
returned syntactic type will be S. The backward
slash \ indicates the argument is expected on the
left, while a forward slash / indicates it is ex-
pected on the right. The syntactic attribute pl spec-
ifies that the argument must be plural. Attribute
variables enforce agreement between syntactic at-
tributes. For example, as in Figure 2, adjectives
are assigned the syntax N[x]/N[x], where x is used
to indicate that the attribute of the argument will
determine the attribute of the returned category.
The simply-typed lambda calculus logical form in
the category represents its semantic meaning. The
typing system includes basic types (e.g., entity e,
truth value t) and functional types (e.g., 〈e, t〉 is
the type of a function from e to t). In the example
category, λx.λd.dance-01(d) ∧ ARG0(d, x) is a
〈e, 〈e, t〉〉-typed function expecting an ARG0 ar-
gument, and the conjunction specifies the roles of
the dance-01 frame.

A CCG is defined by a lexicon and a set of com-
binators. The lexicon pairs words and phrases with
their categorial meaning. For example, dance `
λx.λd.dance-01(d) ∧ ARG0(d, x) pairs dance
with the category above. We adopt a factored
representation of the lexicon (Kwiatkowski et al.,
2011), where entries are dynamically generated by



combining lexemes and templates. For example,
the above lexical entry can be generated by pair-
ing the lexeme 〈dance, {dance-01}〉with the tem-
plate λv1.[S\NP : λx.λa.v1(a) ∧ARG0(a, x)].

Skolem Terms and IDs Generalized Skolem
terms (henceforth, Skolem terms) for CCG were
introduced by Steedman (2011) to capture com-
plex dependencies with relatively local quantifi-
cation. We define here a simplified version of
the theory to represent entities and allow distant
references. Let A be a 〈〈e, t〉, e〉-typed predi-
cate. Given a 〈e, t〉-typed logical expression C,
the logical form An(C) is a Skolem term with
the Skolem ID n. For example, A2(λy.boy(y))
is a Skolem term that could represent the noun
phrase the boy, which introduces a new entity.
Skolem IDs are globally scoped, i.e., they can
be referred from anywhere in the logical form
without scoping constraints. To refer to Skolem
terms, we define the 〈id, e〉-typed predicate R.
For example, the sentence the boy loves him-
self may be represented with A1(λx.love-01(x) ∧
ARG0(x,A2(λy.boy(y))) ∧ ARG1(x,R(2))),
whereR(2) references A2(λy.boy(y)).

5 Mapping Sentences to Logical Form

Given a sentence x and lexicon Λ, the function
GEN(x,Λ) defines the set of possible derivations.
Each derivation d is a tuple 〈y,M〉, where y is a
CCG parse tree andM is a mapping of constants
from u, the underspecified logical form at the root
of y, to their fully specified form.

5.1 Underspecified Logical Forms

An underspecified logical form represents multi-
ple logical forms via a mapping function that maps
its constants to sets of constants and Skolem IDs.
For example, consider the underspecified logical
form u at the top of Figure 3b. If, for example,
REL can be mapped to manner or ARG2, then
the sub-expression REL(h,A6(λo.official(o)))
represents manner(h,A6(λo.official(o))) or
ARG2(h,A6(λo.official(o))). During learning,
we assume access to fully specified logical forms,
which we convert to underspecified form as
needed. In practice, all binary relations, except
ARG0 and ARG1, and all Skolem ID references
are underspecified.

Formally, let C be the set of all constants and
I(u) the set of all Skolem IDs in the logical form
u. Let Su : C → 2C∪I(u) be a specification func-

tion, such that its inverse is deterministic. We call
a constant c a placeholder if |Su(c)| > 1. Given
an underspecified logical form u, applying Su to
all constants u contains, generates a set of fully
specified logical forms.

We define Su to be (a) Su(ID) = I(u),
the set of Skolem IDs in u, (b) Su(REL) =
{part,ARG2, . . . }, all 67 active AMR relations
except ARG0 and ARG1, (c) Su(REL-of) =
{part-of,ARG0-of, . . . }, all 33 passive relations,
and otherwise (d) Su(c) = c. For example, in u in
Figure 3b, the set of assignments to the ID place-
holder is I(u) = {1, 2, 3, 4, 5, 6, 7}.

5.2 Derivations
The first part of a derivation d = 〈y,M〉 is a CCG
parse tree y with an underspecified logical form u
at its root. For example, Figure 3a shows such a
CCG parse tree, where the logical form contains
the placeholders REL, REL-of and ID.

The second part of the derivation is a func-
tion M : CONSTS(u) → C ∪ I(u), where
CONSTS(u) is the set of all occurrences of con-
stants in u. For example, in Figure 3b, CONSTS(u)
contains, among others, three different occur-
rences of ARG1 and one of ID, and M maps
REL to ARG2, REL-of to ARG0-of and ID to
the Skolem ID 2. The set of potential assignments
for each occurrence of constant c is Su(c), andM,
which returns a single element for each constant,
is a disambiguation of Su. ApplyingM to all con-
stants in u results in the final logical form z.

Decomposing the derivation provides two ad-
vantages. First, we are able to defer decisions from
the CCG parse to the factor graph, thereby consid-
ering fewer hypotheses during parsing and sim-
plifying the computation. Second, we can repre-
sent distant references while avoiding the complex
parse trees that would have been required to repre-
sent these dependencies with scoped variables in-
stead of Skolem IDs.2

5.3 Model
Given a sentence x, we use a weighted log-linear
CCG (Lafferty et al., 2001; Clark and Curran,
2007) to rank the space of possible parses under
the grammar Λ. At the root of each CCG deriva-
tion is the underspecified logical form u.

To represent a probability distribution overM,
we build for each u a factor graphGu = 〈V, F,E〉,

2Similar to mention clustering methods for co-reference
resolution (Ng, 2010), IDs can be viewed as creating clusters.



(a) CCG parse y: Maps the sentence x to an underspecified logical form u (Section 5.1) with placeholders for
unresolved decisions: ID for reference identifiers and the predicates REL and REL-of for unresolved relations.

x: Pyongyang officials denied their involvement

NP[sg] N[pl]\(N[pl]/N[pl]) S\NP/NP NP[pl] N[nb]
A1(λc.city(c)∧ λf.λp.person(p)∧ λx.λy.λd.deny-01(d)∧ R(ID) λi.involve-01(i)

name(c,A2(λn.name(n)∧ REL-of(p,A3(f(λh.have-org-role-91(h)∧ ARG0(d, y)∧
op(n,PYONGYANG)))) REL(h,A4(λo.official(o)))))) ARG1(d, x)

< >
>
<

A
u: A1(λd.deny-01(d) ∧ ARG0(d,A2(λp.person(p) ∧ REL-of(p,A3(λh.have-org-role-91(h) ∧ ARG1(h,A4(λc.city(c) ∧ name(c,

A5(λn.name(n) ∧ op(n,PYONGYANG))))) ∧ REL(h,A6(λo.official(o)))))) ∧ ARG1(d,A7(λi.involve-01(i) ∧ ARG1(i,R(ID))))))

(b) Constant mappingM: Each constant in u, the logical form at the root of y, is mapped to a Skolem ID or a
logical constant to create the fully specified logical form z, which can be converted to an AMR. Only mappings
that modify constants are illustrated.

u: A1(λd.deny-01(d) ∧ARG0(d,A2(λp.person(p) ∧ REL-of(p,A3(λh.have-org-role-91(h) ∧
ARG1(h,A4(λc.city(c) ∧ name(c,A5(λn.name(n) ∧ op(n,PYONGYANG))))) ∧
REL(h,A6(λo.official(o)))))) ∧ARG1(d,A7(λi.involve-01(i) ∧ARG1(i,R(ID))))))

z: A1(λd.deny-01(d) ∧ARG0(d,A2(λp.person(p) ∧ARG0-of(p,A3(λh.have-org-role-91(h) ∧
ARG1(h,A4(λc.city(c) ∧ name(c,A5(λn.name(n) ∧ op(n,PYONGYANG))))) ∧
ARG2(h,A6(λo.official(o)))))) ∧ARG1(d,A7(λi.involve-01(i) ∧ARG1(i,R(2))))))

Figure 3: A complete derivation for the sentence Pyongyang officials denied their involvement.

B

A

unit, prep-with, frequency,

prep-against, compared-to,

employed-by, ARG2, . . .

unit-of, prep-with-of, frequency-of,

prep-against-of, compared-to-of,

employed-by-of, ARG0-of, . . .

C2

C31, 2, 3, 4, 5, 6, 7

A1(�d.deny-01(d)^
ARG0(d, A2(�p.person(p)^

REL-of(p, A3(�h.have-org-role-91(h)^
ARG1(h, A4(�c.city(c)^

name(c, A5(�n.name(n) ^ op(n, PYONGYANG)))))^
REL(h, A6(�o.o�cial(o))))))^

ARG1(d, A7(�i.involve-01(i)^
ARG1(i, R(ID))))))

Figure 4: A visualization of the factor graph constructed for the derivation in Figure 3. Variables are marked with
gray background. The set of possible assignments, marked with a dashed arrow, is only specified for placeholders
(REL-of , REL and ID). Only a subset of the factors are included (A, B, C2 and C3). Solid lines represent edges.
Factor A captures selectional preference between the types have-org-role-91 and official to determine the relation
REL. Factor B does the same for person and have-org-role-91 to determine REF-of . Factors C2 and C3 account
for selectional preferences when resolving ID. In C2, we consider the assignment 2, which will create a relation
of type ARG1 between the types involve-01 and person. C3 similarly considers the assignment 3.

where V = CONSTS(u) is the set of variables,
F is the set of factors and E is the set of edges.
Each edge is of the form (v, f) where v ∈ V and
f ∈ F . Figure 4 shows the factor graph used in
generating the derivation in Figure 3, including all
the variables and a subset of the factors. For each
variable vc ∈ V such that c ∈ CONSTS(u) the set
of possible assignments is determined by Su(c).

To generate the factors F and edges E we use
the function Φ(V ′) that maps a set of variables
V ′ ⊆ V to a factor f and a set of edges, each
one of the form (v, f), where v ∈ V ′. Factors ex-
press various features (Section 7), such as selec-
tional preferences and control structures. In the
figure, Factor A captures the selectional prefer-
ence for the assignment of the relation REL be-
tween have-org-role-91 and official. Factor B
captures a similar preference, this time to resolve

REL-of . Factor C2 captures a selectional pref-
erence triplet involve-01/ARG1/person that will
be created if ID is resolved to the Skolem ID 2.
Finally, C3 captures a similar preference for re-
solving ID to 3. Since the assignment of many of
the variables is fixed, i.e., they are fully specified
constants, in practice our factor graph representa-
tion simply conditions on them.

Derivations are scored using a log-linear model
that includes both CCG parse features and those
defined by the factor graph. Let D(z) be the sub-
set of derivations with the final logical form z and
θ ∈ Rl be a l-dimensional parameter vector. We
define the probability of the logical form z as

p(z|x; θ,Λ) =
∑

d∈D(z)

p(d|x; θ,Λ) ,

and the probability of a derivation d is defined as

p(d|x; θ,Λ) =
eθ·φ(x,d)∑

d′∈GEN(x,Λ) e
θ·φ(x,d′)

, (1)



where φ(x, d) ∈ Rl is a feature vector (Section 7).

5.4 Inference

To compute the set of derivations GEN(x,Λ) we
define a two-stage process. We first run the
CCG parser to generate underspecified logical
forms. Following previous work (Zettlemoyer and
Collins, 2005), we use CKY parsing to enumer-
ate the top-K underspecified logical forms.3 Dur-
ing the CKY chart construction, we ignore Skolem
IDs when comparing categories. This allows us to
properly combine partial derivations and to fully
benefit from the dynamic programming. We dy-
namically generate lexical entries for numbers and
dates using regular expression patterns and for
named-entities using a recognizer. For every un-
derspecified logical form u, we construct a factor
graph and use beam search to find the top-L con-
figurations of the graph.4

During learning, we use the function
GENMAX(x, z, θ,Λ) to get all derivations
that map the sentence x to the logical form z,
given parameters θ and lexicon Λ. To compute
GENMAX, we follow Zettlemoyer and Collins
(2005) and collect constant co-occurrence counts
from z to prune from the CKY chart any category
that cannot participate in a derivation leading to
z. Since only constant names are changed during
the second stage, setting the factor graph to get
z is trivial: if the underspecified logical form is
identical to z except the placeholders, we replace
the placeholders with the correct final assignment,
otherwise the derivation cannot result in z.

6 Learning

Learning the two-stage model requires inducing
the entries of the CCG lexicon Λ and estimating
the parameters θ, which score both stages of the
derivation. We assume access to a training set
of N examples D = {(xi, zi) : i = 1 . . . N},
each containing a sentence xi and a logical form
zi. This data does not include information about
the lexical entries and CCG parsing operations re-
quired to construct the correct derivations. We
consider all these decisions as latent.

The main learning algorithm (Algorithm 1)
starts by initializing the lexicon (line 1) and then

3See Artzi et al. (2014) for a description of this process
and how to approximate the partition function in Equation 1.

4Experiments with loopy belief propagation showed it to
be slower and less effective for our task.

Algorithm 1 The main learning algorithm.

Input: Training set D = {(xi, zi) : i = 1 . . . N}, number
of iterations T , mini-batch size M , seed lexicon Λ0 and
learning rate µ.

Definitions: SUB(D, i, j) is the set of the next j sam-
ples from D starting at i. GENMAX(x, z, θ,Λ) is
the set of viterbi derivations from x with the final re-
sult z given parameters θ and lexicon Λ. LEX(d)
is the set of lexical entries used in the derivation d.
COMPUTEGRAD(x, z, θ,Λ) computes the gradient for
sentence x and logical form z, given the parame-
ters θ and lexicon Λ, and it described in Section 6.2.
ADAGRAD(∆) applies a per-feature learning rate to the
gradient ∆ (Duchi et al., 2011).

Output: Lexicon Λ and model parameters θ.
1: Λ← Λ0

2: for t = 1 to T do
3: » Generate entries and update the lexicon.
4: for i = 1 to N do
5: λnew ← λnew ∪ GENENTRIES(xi, zi, θ,Λ)

6: Λ← Λ ∪ λnew
7: » Compute and apply mini-batch gradient updates.
8: for i = 1 to d N

M
e do

9: ∆← ~0
10: for (x, z) in SUB(D, i,M) do
11: » Compute and aggregate the gradient.
12: ∆← ∆ + COMPUTEGRAD(x, z, θ,Λ)

13: θ ← θ + µADAGRAD(∆)

14: » Get all correct viterbi derivations.
15: V ←

⋃
(x,z)∈D GENMAX(x, z, θ,Λ)

16: » Retain only entries from derivations in V .
17: Λ←

⋃
d∈V LEX(d)

18: return Λ and θ

Algorithm 2 GENENTRIES: Procedure to generate lexical
entries from one training sample. See Section 6.1 for details.

Input: Sample (x, z), model parameters θ and lexicon Λ.
Definitions: GENLEX(x, z,Λ) and

RECSPLIT(z, z, θ,Λ) are defined in Section 6.1.
Output: Set of lexical entries λ.

1: » Augment lexicon with sample-specific entries.
2: Λ+ ← Λ ∪ GENLEX(x, z,Λ)
3: » Get max-scoring correct derivations.
4: D+ ← GENMAX(x, z,Λ+, θ)
5: if |D+| > 0 then
6: » Return entries from max-scoring derivations.
7: return

⋃
d∈D+

LEX(d)

8: else
9: » Top-down splitting to generate new entries.

10: return RECSPLIT(x, z, θ,Λ+)

processes the data T times (line 2), each time al-
ternating between batch expansion of the lexicon
and a sequence of mini-batch parameter updates.
An iteration starts with a batch pass to expand the
lexicon. The subroutine GENENTRIES, described
in Section 6.1 and Algorithm 2, is called to gener-
ate a set of new entries for each sample (line 5).

Next, we update the parameters θ with mini-
batch updates. Given a mini-batch size of M ,
we use the procedure SUB(D, i,M) to get the
i-th segment of the data D of size M . We pro-
cess this segment (line 10) to accumulate the



mini-batch gradient ∆ by calling the procedure
COMPUTEGRAD(x, z, θ,Λ) (line 12), which com-
putes the gradient for x and z given θ and Λ, as
described in Section 6.2. We use AdaGrad (Duchi
et al., 2011) parameter updates (line 13).

Each iteration concludes with removing all lexi-
cal entries not used in max-scoring correct deriva-
tions, to correct for overgeneration (lines 14-17).

6.1 Lexicon Expansion: GENENTRIES

Given a sentence x, a logical form z, parameters θ
and a lexicon Λ, GENENTRIES(x, z, θ,Λ) (Algo-
rithm 2) computes a set of lexical entries, such that
there exists at least one derivation d using these
entries from x to z. We first use GENLEX(x, z,Λ)
to generate a large set of potential lexical entries
from u, the underspecified form of z, by generat-
ing lexemes (Section 4) and pairing them with all
templates in Λ. We then use a two-pass process
to select the entries to return. The set of gener-
ated lexemes is a union of: (a) the set Ggen that
includes all pairings of subsets of constants from
z with spans in x up to length kgen and (b) the
set that is constructed by matching named-entity
constants5 in z with their corresponding mentions
in the text to create new lexemes with potentially
any other constant (for lexemes with multiple con-
stants). Λ is augmented with the generated set of
lexical entries to create Λ+ (line 2).

First Pass Given the augmented lexicon Λ+, we
compute the set D+ = GENMAX(x, z, θ,Λ+)
(line 4). Following Artzi and Zettlemoyer
(2013b), we constrain the set of derivations to in-
clude only those that use at most one lexeme from
Ggen. If generating new lexemes is sufficient to
derive z from x, D+ will contain these derivations
and we return their lexical entries to be added to
the lexicon Λ (lines 5-7). Otherwise, we proceed
to do a second pass, where we try to generate new
templates to parse the sentence.

Second Pass: RECSPLIT In this pass we try
to generate max-scoring derivations in a top-down
process. Starting from u, the underspecified form
of z, we search for CCG parsing steps that will
connect to existing partial derivations in the CKY
chart to create a complete parse tree. Since the
space of possible operations is extremely large,

5Named-entity constants are created from name instances
when converting from AMR to lambda calculus. See the sup-
plementary material for the exact procedure.

we use CCGBank (Hockenmaier and Steedman,
2007) categories to prune, as described below.

The second pass is executed by calling
RECSPLIT(x, z, θ,Λ+), which returns a set of lex-
ical entries to add to the model (line 10). We recur-
sively apply the splitting operation introduced by
Kwiatkowski et al. (2010). Given a CCG category,
splitting outputs all possible category pairs that
could have originally generated it. For example,
given the category S\NP ` λy.λd.deny-01(d) ∧
ARG0(d, y) ∧ ARG1(d,A1(λi.involve-01(i) ∧
ARG1(i,R(ID)))), one of the possi-
ble splits will include the categories
S\NP/NP ` λx.λy.λd.deny-01(d) ∧
ARG0(d, y) ∧ ARG1(d, x) and NP `
A1(λi.involve-01(i) ∧ ARG1(i,R(ID))) which
would combine with forward application (>).
Kwiatkowski et al. (2010) present the full details.6

The process starts from u, the underspecified
form of z, and recursively applies the splitting
operation while ensuring that: (1) there is at most
one entry from Ggen or one entry where both the
template and lexemes are new in the derivation,
(2) each parsing step must have at least one child
that may be constructed from an existing partial
derivation, and (3) for each new parsing step, the
syntax of a newly generated child must match the
syntax of a CCGBank category for the same span.
To search the space of derivations we populate a
CKY chart and do a top-down beam search, where
in each step we split categories for smaller spans.

6.2 Gradient Computation: COMPUTEGRAD

Given a sentence x, its labeled logical form
z, parameters θ and lexicon Λ, the procedure
COMPUTEGRAD(x, z, θ,Λ) computes the gradi-
ent for the sample (x, z). Let D∗(z) =
GENMAX(x, z, θ,Λ), the set of max-scoring cor-
rect derivations. The hard gradient update is:

1

|D∗(z)|
∑

d∈D∗(z)

φ(xi, d)− Ep(d,|xi;θ,Λ)[φ(xi, d)] , (2)

where φ(x, d) ∈ Rl is a l-dimensional feature vec-
tor (Section 5.3) and the positive portion of the
gradient, rather than using expected features, av-
erages over all max-scoring correct derivations.

Early updates To generate an effective update
when no correct derivation is observed, we fol-
low Collins and Roark (2004) and do an early up-
date if D∗(z) is empty or if GEN(x,Λ), the set

6Unlike Kwiatkowski et al. (2010), we also introduce syn-
tactic attributes (e.g., pl, sg) when splitting.



of derivations for x, does not contain a derivation
with the correct final logical form z. Given the par-
tial derivations, our gradient computation is identi-
cal to Equation 2. However, in contrast to Collins
and Roark (2004) our data does not include gold
derivations. Therefore, we attempt to identify
max-scoring partial derivations that may lead to
the correct derivation. We extract sub-expressions
from u,7 the underspecified form of z, and search
the CKY chart for the top-scoring non-overlapping
spans that contain categories with these logical
forms. We use the partial derivations leading to
these cells to compute the gradient.

The benefit of early updates is two-fold. First,
as expected, it leads to higher quality updates that
are focused on the errors the model makes. Sec-
ond, given the complexity of the data, it allows us
to have updates for many examples that would be
otherwise ignored. In our experiments, we observe
this behavior with nearly 40% of the training set.

7 Experimental Setup
Data, Tools and Metric For evaluation, we use
AMR Bank release 1.0 (LDC2014T12). We use
the proxy report portion, which includes newswire
articles from the English Gigaword corpus, and
follow the official split for training, development
and evaluation (6603/826/823 sentences). We use
EasyCCG (Lewis and Steedman, 2014) trained
with the re-banked CCGBank (Hockenmaier and
Steedman, 2007; Honnibal et al., 2010) to gener-
ate CCGBank categories, the Illinois Named En-
tity Tagger (Ratinov and Roth, 2009) for NER,
Stanford CoreNLP (Manning et al., 2014) for to-
kenization and part-of-speech tagging and UW
SPF (Artzi and Zettlemoyer, 2013a) to develop our
system. We use SMATCH (Cai and Knight, 2013)
to evaluate logical forms converted back to AMRs.

CCG We use three syntactic attributes: singular
sg, mass nouns nb and plural pl. When factor-
ing lexical entries, we avoid extracting binary re-
lations and references, and leave them in the tem-
plate. We use backward and forward binary com-
binators for application, composition and cross-
ing composition. We allow non-crossing compo-
sition up to the third order. We also add rules
to handle punctuation and unary rules for type-
shifting non-adjectives in adjectival positions and
verb phrases in adverbial positions. We allow

7We extract all sub-expressions of type e, 〈e, t〉,
〈〈e, t〉, 〈e, t〉〉 or 〈e, 〈e, t〉〉 from u.

shifting of bare plurals, mass nouns and named
entities to noun phrases. To avoid spurious am-
biguity during parsing, we use normal-form con-
straints (Hockenmaier and Bisk, 2010). We use
five basic lambda calculus types: entity e, truth
value t, identifier id, quoted text txt and integer i.

Features During CCG parsing, we use indicator
features for unary type shifting, crossing compo-
sition, lexemes, templates and dynamically gen-
erated lexical entries. We also use indicators for
co-occurrence of part-of-speech tags and syntac-
tic attributes, repetitions in logical conjunctions
and attachments in the logical form. In the factor
graph, we use indicator features for control struc-
tures, parent-relation-child selectional preferences
and for mapping a relation to its final form. See the
supplementary material for a detailed description.

Initialization and Parameters We created the
seed lexicon from the training data by sampling
and annotating 50 sentences with lexical entries,
adding entries for pronouns and adding lexemes
for all alignments generated by JAMR (Flanigan
et al., 2014). We initialize features weights as fol-
lows: 10 for all lexeme feature for seed entries
and entries generated by named-entity matching
(Section 6.1), IBM Model 1 scores for all other
lexemes (Kwiatkowski et al., 2011), -3 for unary
type shifting and crossing composition features, 3
for features that pair singular and plural part-of-
speech tags with singular and plural attributes and
0 for all other features. We set the number of it-
erations T = 10 and select the best model based
on development results. We set the max number
of tokens for lexical generation kgen = 2, learning
rate µ = 0.1, CCG parsing beam K = 50, factor
graph beam L = 100, mini batch size M = 40
and use a beam of 100 for GENMAX.

Two-pass Inference During testing, we perform
two passes of inference for every sentence. First,
we run our inference procedure (Section 5.4). If no
derivations are generated, we run inference again,
allowing the parser to skip words at a fixed cost
and use the entries for related words if a word is
unknown. We find related words in the lexicon us-
ing case, plurality and inflection string transforma-
tions. Finally, if necessary, we heuristically trans-
form the logical forms at the root of the CCG parse
trees to valid AMR logical forms. We set the cost
of logical form transformation and word skipping
to 10 and the cost of using related entries to 5.



8 Results

Table 1 shows SMATCH test results. We com-
pare our approach to the latest, fixed version of
JAMR (Flanigan et al., 2014) available online,8

the only system to report test results on the official
LDC release. Our approach outperforms JAMR
by 3 SMATCH F1 points, with a significant gain
in recall. Given consensus inter-annotator agree-
ment of 83 SMATCH F1 (Flanigan et al., 2014),
this improvement reduces the gap between auto-
mated methods and human performance by 15%.
Although not strictly comparable, Table 1 also in-
cludes results on the pre-release AMR Bank cor-
pus, including the published JAMR results, their
fixed results and the results of Wang et al. (2015).

Table 2 shows SMATCH scores for the devel-
opments set, with ablations. The supplementary
material includes example output derivations and
qualitative comparison to JAMR outputs. We first
remove underspecifying constants, which leaves
the factor graph to resolve only references. While
the expressivity of the model remains the same,
more decisions are considered during parsing,
modestly impacting performance.

We also study the different methods for lexical
generation. Skipping the second recursive split-
ting pass in GENENTRIES creates an interesting
tradeoff. As we are unable to learn templates with-
out splitting, we induce a significantly smaller lex-
icon (500K vs. 1.6M entries). Although we are
unable to recover many syntactic constructions,
our search problem is in general much simpler. We
therefore see a relatively mild drop in overall per-
formance (1.1 F1). Removing Ggen during lexi-
cal generation (Section 6.1) creates a more signif-
icant drop in performance (3.4 F1), demonstrating
how considering all possible lexemes allows the
system to recover entries that are not covered by
heuristic alignments. We are also able for the first
time to report AMR parsing results without any
surface-form similarity heuristics, by removing
both JAMR alignments and named-entity match-
ing lexical generation (Section 6.1). The signifi-
cant drop in performance (20 points F1) demon-
strates the need for better alignment algorithm.

Finally, Figure 5 plots development SMATCH

F1 with and without early updates. As expected,
early updates increase the learning rate signifi-
cantly and have a large impact on overall perfor-
mance. Without early updates we are unable to

8JAMR is available at http://tiny.cc/jamr.

P R F1
JAMR (fixed) 67.8 59.2 63.2
Our approach 66.8 65.7 66.3
Pre-release corpus results
JAMR (Flanigan et al., 2014) 52.0 66.0 58.0
JAMR (fixed) 66.8 58.3 62.3
Wang et al. (2015) 64.0 62.0 63.0

Table 1: Test SMATCH results.
P R F1

Full system 67.2 65.1 66.1
w/o underspecified constants 66.9 64.2 65.5

Lexical learning ablations
w/o splitting 65.0 65.0 65.0
w/o Ggen 62.6 62.7 62.6
w/o surface-form similarity 55.9 38.5 45.6

Table 2: Development SMATCH results.

1 2 3 4 5 6 7 8 9 10
45
50
55
60
65

Iteration number

S
M

A
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F1
Figure 5: Development SMATCH F1 without early up-
dates (•) and with early updates (�).

learn from almost half of the data, and perfor-
mance drops by nearly 15 points.

9 Conclusion
We described an approach for broad-coverage
CCG induction for semantic parsing, including
a joint representation of compositional and non-
compositional semantics, a new grammar induc-
tion technique and an early update procedure. We
used AMR as the target representation and present
new state-of-the-art AMR parsing results.

While we focused on recovering non-
compositional dependencies, other non-
compositional phenomena remain to be studied.
Although our technique is able to learn certain id-
ioms as multi-word phrases, learning to recognize
discontinuous idioms remains open. Similarly,
resolving cross-sentence references, which are not
annotated in AMR Bank, is important future work.
Finally, we would like to reduce the dependency
on surface-form heuristics, for example to better
generalize to other languages.
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