Global Neural CCG Parsing with Optimality Guarantees

Kenton Lee Mike Lewis[†] Luke Zettlemoyer

University of Washington

[†] Now at Facebook AI Research

This Talk

Challenge:

Global models (e.g. Recursive NNs) break dynamic programs

This Talk

Challenge:

Global models (e.g. Recursive NNs) break dynamic programs

Our approach:

Combine local and global models in $A^{\ast}\ parser$

Result:

Global model with exact inference

Input

Fruit flies like bananas

Output

Fruit	flies	like	bananas
$\overline{NP/NP}$	\overline{NP}	$\overline{(S \setminus NP)/NP}$	NP
\rightarrow NP $>$		$S \setminus NP$	
\overline{S}			

Dutput like flies Fruit $\overline{NP/NP}$ \overline{NP} $\overline{(S \setminus NP)/NP}$ NP $\overline{S \backslash NP}$ Sflies Fruit like bananas NP/NP NP $(S \setminus NP)/NP$ NPlike flies Fruit \overline{NP} $(S \setminus NP) \overline{/NP}$ NP/NP $S \backslash NP$ NP $S \backslash NP$ NP<SFruit flies like

Klein and Manning, 2001

bananas

 \overline{NP}

bananas

NP

bananas

NP

 $\overline{NP/NP}$

 \overline{NP}

 $\overline{(S \setminus NP)/NP}$

Fruit flies like bananas

Input

Fruit flies like bananas

Output

Output

Fruit flies like bananas

- * Predicted parse: $y^* = \underset{y \in Y}{\operatorname{argmax}} g(y)$
- Exponential number of nodes
 - → Intractable inference

Managing Intractable Search Spaces

Approximate inference with global expressivity, e.g.

- * Greedy / beam search:
 - * Nivre, 2008
 - * Chen and Manning, 2014
 - * Andor et al., 2016
- * Reranking:
 - * Charniak and Johnson, 2005
 - * Huang, 2008
 - * Socher et al., 2013

Locally Factored Parsing

Scores condition on local structures

- * Make locality assumptions:
 - e.g. features are local to CFG productions
- Polynomial number of nodes
- Dynamic programs enable
 tractable inference

Locally Factored Parsing

Scores condition on local structures

Dynamic programs with **locally factored models**, e.g.

- * CKY:
 - * Collins, 1997
 - Durrett and Klein, 2015
- * Minimum spanning tree:
 - * McDonald et al., 2005
 - * Kiperwasser and Goldberg, 2016

Recursive neural networks break dynamic programs!

rimmum spanning tree.

- * McDonald et al., 2005
- * Kiperwasser and Goldberg, 2016

Local vs. Global Models

flies Fruit flies like like \overline{NP} $\overline{NP \setminus NP}$ $\overline{(S \setminus NP)/NP}$ \overline{NP} $\overline{NP/NP}$ \overline{NP} $\overline{(S\backslash NP)/NP}$ \overline{NP} NP $S \setminus NP$ NP $S \setminus NP$ Fruit flies Fruit flies like NP/NP NP \overline{NP} $\overline{NP \setminus NP}$ $\overline{(S \setminus NP)/NP}$ NP NP $S \setminus NI$ flies Fruit like \overline{NP} $\overline{(S \setminus NP)/NP}$ $\overline{NP \setminus NP}$ $\overline{NP/NP}$ NPflies like Fruit \overline{NP} $\overline{S \setminus NP}$ $\overline{(S \setminus S)/NP}$ Fruit flies like \overline{NP} $\overline{S\backslash NP}$ $\overline{(S \setminus S)/NP}$ NP Fruit flies like banana S \overline{NP} $\overline{S\backslash NP}$ $\overline{(S\backslash S)/NP}$ \overline{NP} $S \setminus S$

Local model:

Global model: $y^* = \underset{y \in Y}{\operatorname{argmax}} (g_{global}(y))$ Intractable Expressive

This Work

Combined model:

Outline

- * Background: A* parsing
- Combined global and local parsing model
- * Learning to search accurately and efficiently
- Experiments on CCGBank

$$y^* = \underset{y \in Y}{\operatorname{argmax}} g(y)$$

- * Search in the space of partial parses
- * First explored full parse guaranteed to be optimal

24

Partial parse

Agenda position	f(y)	${\mathcal Y}$
l	4.5	$\frac{\text{bananas}}{NP}$
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
3	1.9	$\frac{\text{Fruit}}{NP}$
4	-0.5	$\frac{\text{Fruit}}{NP/NP}$

Agenda position	f(y)	${\mathcal{Y}}$
Ι	4.5	$\frac{\text{bananas}}{NP}$
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
3	1.9	$\frac{\text{Fruit}}{NP}$
4	-0.5	$\frac{\text{Fruit}}{NP/NP}$

Agenda position	f(y)	${\mathcal Y}$
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
3	1.9	$\frac{\text{Fruit}}{NP}$
4	-0.5	$\frac{\text{Fruit}}{NP/NP}$

Agenda position	f(y)	${y}$
I	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${\mathcal Y}$
I	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${\mathcal Y}$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${y}$
	2.1	$\frac{\frac{\text{like}}{(S \setminus NP)/NP}}{S \setminus NP} \xrightarrow{\text{bananas}}{NP}$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${\mathcal{Y}}$
I	2.1	$\frac{\frac{\text{like}}{(S \setminus NP)/NP}}{S \setminus NP} \xrightarrow{\text{bananas}} >$
2	1.9	$\frac{\text{Fruit}}{NP}$
3	-0.5	$\frac{\text{Fruit}}{NP/NP}$
4	-1.3	$\frac{\text{flies}}{NP}$

Agenda position	f(y)	${y}$
	1.9	$\frac{\text{Fruit}}{NP}$
2	-1.5	$\frac{\text{like}}{(S \setminus S)/NP}$
3	•••	•••
4	•••	•••

Fruit	flies	like	bananas
$\overline{NP/NP}$	\overline{NP}	$\overline{(S \setminus NP)/NP}$	NP
NP	—>	$S \backslash NP$	>
		S	<

Outline

- Background: A* parsing
- * Combined global and local parsing model
- * Learning to search accurately and efficiently
- Experiments on CCGBank

Global A* Parsing

$y^* = \underset{y \in Y}{\operatorname{argmax}} g(y)$

- * First explored full parse guaranteed to be optimal
- * Global search graph is exponential in sentence length
- * Open question: Can we still learn to search efficiently?

Modeling Global Structure

 $g_{global}(y)$:

$$h_{global}(y)$$
 :

Modeling Global Structure

Modeling Global Structure

g(y) =

h(y) =

gglobal (y) Non-positive global model

Modeling Global Structure $g(y) = g_{local}(y) + g_{global}(y)$ Any locally factored model with Non-positive an admissible A^* heuristic global model $h(y) = h_{local}(y) + 0$

Division of Labor

$g(y) = g_{local}(y) + g_{global}(y)$

Limited expressivity

 Provides guidance with an A* heuristic Global expressivity

 Discriminative only when necessary

Global Model: $g_{global}(y)$

Non-positive Global Model

Division of Labor

$g(y) = g_{local}(y) + g_{global}(y)$

Limited expressivity

 Provides guidance with an A* heuristic Global expressivity

 Discriminative only when necessary

Outline

- Background: A* parsing
- * Combined global and local parsing model
- * Learning to search accurately and efficiently
- Experiments on CCGBank

Agenda position	f(y)	y	ls correct?
I	4.5	$\frac{\text{bananas}}{NP}$	
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$	
3	1.9	$\frac{\text{Fruit}}{NP}$	\bigotimes
4	-0.5	$\frac{\text{Fruit}}{NP/NP}$	

explored

agenda

unexplored

f(y)

1.9

-0.5

. . .

. . .

 \mathcal{Y}

Fruit

NP

Fruit

 $\overline{NP/NP}$

. . .

. . .

Is correct?

. . .

Agenda

position

2

3

Violation-based Loss

Agenda position	f(y)	y	ls correct?	
I	4.5	$\frac{\text{bananas}}{NP}$		
2	3.1	$\frac{\text{like}}{(S \setminus NP)/NP}$		
3	1.9	$\frac{\text{Fruit}}{NP}$	⊗	
4	-0.5	Fruit NP/NP		

Agenda position	f(y)	y is correct	
I	1.9	$\frac{\text{Fruit}}{NP}$	\otimes
2	-0.5	Fruit NP/NP	
3			
4			

Violation-based Loss

Jointly Optimizing Accuracy and Efficiency

	Agenda position	f(y)	y	ls correct?
Correct partial parse can still be	I	1.9	$\frac{\text{Fruit}}{NP}$	\bigotimes
predicted via backtracking	2	-0.5	$\frac{\text{Fruit}}{NP/NP}$	
	3	•••	•••	•••
	4	•••	•••	•••

Jointly Optimizing Accuracy and Efficiency

Agenda position	f(y)	y	ls correct?

Explicitly optimize for search efficiency!

3	•••	•••	•••
4	•••	•••	•••

Outline

- Background: A* parsing
- * Combined global and local parsing model
- * Learning to search accurately and efficiently
- * Experiments on CCGBank

Experimental Setup

- * $g_{local}(y)$: supertag-factored model from Lewis et al. (2016)
- * Evaluate on CCGBank (Hockenmaier & Steedmar, 2007)
- * Comparisons:

	Clark & Curran (2007)	Xu et al. (2015)	Lewis et al. (2016)	Vaswani et al. (2016)
ls global?		\checkmark		
ls exact?				

Experimental Setup

- * $g_{local}(y)$: supertag-factored model from Lewis et al. (2016)
- * Evaluate on CCGBank (Hockenmaier & Steedmar, 2007)
- * Comparisons:

	Clark & Curran (2007)	Xu et al. (2015)	Lewis et al. (2016)	Vaswani et al. (2016)	Global A*
ls global?		\checkmark			
ls exact?					\checkmark

CCG Parsing Results

CCG Parsing Results

Decoder Comparisons

Context Ablation

Development FI (%)

Number of explorations (lower is better)

Garden Paths

Incorrect partial parse (syntactically plausible in isolation):

The favorite U.S. small business is one whose research and development can be milked for future Japanese use.

Conclusion

- Combining local and global models enables exact inference with global features
- * Efficient decoding by learning to search
- State of the art for CCG parsing
 - * Applicable to other structured prediction tasks